58 research outputs found

    Large current-induced broadening of the superconducting transition in Mo/Au transition edge sensors

    Get PDF
    The R(T, I) shape of the superconducting transition in transition edge sensors (TESs) is of crucial importance to determine their ultimate performance. This paper reports a study of the temperature and current dependences of the transition of Mo/Au TESs, focused on the low resistance region, where these devices preferentially operate. A large broadening of the transition is observed when increasing the applied current. An empirical analytic expression for R(T, I) is found, which describes the transition of devices with different critical temperatures, from R = 0 up to at least 30% R-n (in some cases nearly 80% R-n). Several mechanisms for this behaviour are considered; results show that a current assisted vortex pair unbinding mechanism (Berezinskii-Kosterlitz-Thouless transition) could be the possible origin for this behaviour. Finally, the consequences of the current-induced transition broadening for TES properties and operation are outlined

    The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER¿

    Full text link
    The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour

    Thermal stability of copper nitride thin films: The role of nitrogen migration

    Get PDF
    The atomic composition, structural, morphological, and optical properties of N-rich copper nitride thin films have been investigated prior to and after annealing them in vacuum at temperatures up to 300 °C. Films were characterized by means of ion-beam analysis (IBMA), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry techniques (SE). The data reveal that even when the total (integrated over the whole thickness) atomic composition of the films remains constant, nitrogen starts to migrate from the bulk to the film surface, without out-diffusing, at temperatures as low as 100 °C. This migration leads to two chemical phases with different atomic concentration of nitrogen, lattice parameters, and crystallographic orientation but with the same crystal structure. XRD experimental and Rietveld refined data seem to confirm that nitrogen excess accommodates in interstitial locations within the anti-ReO3 crystal lattice forming a solid solution. The influence of nitrogen migration on the optical (electronic) properties of the films will be discusse

    Compositional, structural and morphological modifications of N-rich Cu3N films induced by irradiation with Cu at 42 MeV

    Get PDF
    N-rich Cu3N films were irradiated with Cu at 42 MeV in the fluences range from 4 × 1011 to 1 × 1014 cm−2. The radiation-induced changes in the chemical composition, structural phases, surface morphology and optical properties have been characterized as a function of ion fluence, substrate temperature and angle of incidence of the incoming ion by means of ion-beam analysis (IBA), x-ray diffraction, atomic force microscopy, profilometry and Fourier transform infrared spectroscopy techniques. IBA methods reveal a very efficient sputtering of N whose yield (5 × 103 atom/ion) is almost independent of substrate temperature (RT-300 °C) but slightly depends on the incidence angle of the incoming ion. The Cu content remains essentially constant within the investigated fluence range. All data suggest an electronic mechanism to be responsible for the N depletion. The release of nitrogen and the formation of Cu2O and metallic Cu are discussed on the basis of existing models

    Stopping power dependence of nitrogen sputtering yields in copper nitride films under swift-ion irradiation: Exciton model approach

    Get PDF
    Nitrogen sputtering yields as high as 104 atoms/ion, are obtained by irradiating N-rich-Cu3N films (N concentration: 33 ± 2 at.%) with Cu ions at energies in the range 10?42 MeV. The kinetics of N sputtering as a function of ion fluence is determined at several energies (stopping powers) for films deposited on both, glass and silicon substrates. The kinetic curves show that the amount of nitrogen release strongly increases with rising irradiation fluence up to reaching a saturation level at a low remaining nitrogen fraction (5?10%), in which no further nitrogen reduction is observed. The sputtering rate for nitrogen depletion is found to be independent of the substrate and to linearly increase with electronic stopping power (Se). A stopping power (Sth) threshold of ?3.5 keV/nm for nitrogen depletion has been estimated from extrapolation of the data. Experimental kinetic data have been analyzed within a bulk molecular recombination model. The microscopic mechanisms of the nitrogen depletion process are discussed in terms of a non-radiative exciton decay model. In particular, the estimated threshold is related to a minimum exciton density which is required to achieve efficient sputtering rates

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices

    Get PDF
    This work aims at identifying common potential problems that future fusion devices will encounter for both magnetic (MC) and inertial (IC) confinement approaches in order to promote joint efforts and to avoid duplication of research

    Atypical carcinoid tumours of the lung: prognostic factors and patterns of recurrence

    Full text link
    Background: Atypical carcinoids (AC) of the lung are rare intermediate-grade neuroendocrine neoplasms. Prognostic factors for these tumours are undefined. Methods: Our cooperative group retrieved data on 127 patients operated between 1980 and 2009 because of an AC. Several clinical and pathological features were studied. Results: In a univariable analysis, T-status (p=0.005), N-status (p=0.021), preoperative M-status (previously treated) (p=0.04), and distant recurrence developed during the outcome (p<0.001) presented statistically significant differences related to survival of these patients. In a multivariable analysis, only distant recurrence was demonstrated to be an independent risk factor for survival (p<0.001; HR: 13.1). During the monitoring, 25.2% of the patients presented some kind of recurrence. When we studied recurrence factors in a univariable manner, sublobar resections presented significant relationship with locoregional recurrence (p<0.001). In the case of distant recurrence, T and N status presented significant differences. Patients with preoperative M1 status presented higher frequencies of locoregional and distant recurrence (p=0.004 and p<0.001, respectively). In a multivariable analysis, sublobar resection was an independent prognostic factor to predict locoregional recurrence (p=0.002; HR: 18.1). Conclusions: Complete standard surgical resection with radical lymphadenectomy is essential for AC. Sublobar resections are related to locoregional recurrence, so they should be avoided except for carefully selected patients. Nodal status is an important prognostic factor to predict survival and recurrence. Distant recurrence is related to poor outcome

    Electronic structure of copper nitrides as a function of nitrogen content

    Get PDF
    he nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu3N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10− 3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results

    Ion beam analysis of as-received, H-implanted and post implanted annealed fusion steels

    Get PDF
    The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen
    corecore